C:\JS_KRESREAL\HBP_konverzia\lua\lopcodes.h C:\JS_LUA\lua-5.2.0\src\lopcodes.h
/* /*
** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $ ** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $
** Opcodes for Lua virtual machine ** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h ** See Copyright Notice in lua.h
*/  */ 
   
#ifndef lopcodes_h #ifndef lopcodes_h
#define lopcodes_h #define lopcodes_h
   
#include "llimits.h" #include "llimits.h"
   
   
/*=========================================================================== /*===========================================================================
 We assume that instructions are unsigned numbers.  We assume that instructions are unsigned numbers.
 All instructions have an opcode in the first 6 bits.  All instructions have an opcode in the first 6 bits.
 Instructions can have the following fields:  Instructions can have the following fields:
   `A' : 8 bits    `A' : 8 bits
   `B' : 9 bits    `B' : 9 bits
   `C' : 9 bits    `C' : 9 bits
   'Ax' : 26 bits ('A', 'B', and 'C' together)    'Ax' : 26 bits ('A', 'B', and 'C' together)
   `Bx' : 18 bits (`B' and `C' together)    `Bx' : 18 bits (`B' and `C' together)
   `sBx' : signed Bx    `sBx' : signed Bx
   
 A signed argument is represented in excess K; that is, the number  A signed argument is represented in excess K; that is, the number
 value is the unsigned value minus K. K is exactly the maximum value  value is the unsigned value minus K. K is exactly the maximum value
 for that argument (so that -max is represented by 0, and +max is  for that argument (so that -max is represented by 0, and +max is
 represented by 2*max), which is half the maximum for the corresponding  represented by 2*max), which is half the maximum for the corresponding
 unsigned argument.  unsigned argument.
===========================================================================*/  ===========================================================================*/ 
   
   
enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */  enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */ 
   
   
/* /*
** size and position of opcode arguments. ** size and position of opcode arguments.
*/  */ 
#define SIZE_C      9 #define SIZE_C      9
#define SIZE_B      9 #define SIZE_B      9
#define SIZE_Bx     (SIZE_C + SIZE_B) #define SIZE_Bx     (SIZE_C + SIZE_B)
#define SIZE_A      8 #define SIZE_A      8
#define SIZE_Ax     (SIZE_C + SIZE_B + SIZE_A) #define SIZE_Ax     (SIZE_C + SIZE_B + SIZE_A)
   
#define SIZE_OP     6 #define SIZE_OP     6
   
#define POS_OP      0 #define POS_OP      0
#define POS_A       (POS_OP + SIZE_OP) #define POS_A       (POS_OP + SIZE_OP)
#define POS_C       (POS_A + SIZE_A) #define POS_C       (POS_A + SIZE_A)
#define POS_B       (POS_C + SIZE_C) #define POS_B       (POS_C + SIZE_C)
#define POS_Bx      POS_C #define POS_Bx      POS_C
#define POS_Ax      POS_A #define POS_Ax      POS_A
   
   
/* /*
** limits for opcode arguments. ** limits for opcode arguments.
** we use (signed) int to manipulate most arguments, ** we use (signed) int to manipulate most arguments,
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
*/  */ 
#if SIZE_Bx < LUAI_BITSINT-1 #if SIZE_Bx < LUAI_BITSINT-1
#define MAXARG_Bx        ((1<<SIZE_Bx)-1) #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
#define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */  #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */ 
#else #else
#define MAXARG_Bx        MAX_INT #define MAXARG_Bx        MAX_INT
#define MAXARG_sBx        MAX_INT #define MAXARG_sBx        MAX_INT
#endif #endif
   
#if SIZE_Ax < LUAI_BITSINT-1 #if SIZE_Ax < LUAI_BITSINT-1
#define MAXARG_Ax   ((1<<SIZE_Ax)-1) #define MAXARG_Ax   ((1<<SIZE_Ax)-1)
#else #else
#define MAXARG_Ax   MAX_INT #define MAXARG_Ax   MAX_INT
#endif #endif
   
   
#define MAXARG_A        ((1<<SIZE_A)-1) #define MAXARG_A        ((1<<SIZE_A)-1)
#define MAXARG_B        ((1<<SIZE_B)-1) #define MAXARG_B        ((1<<SIZE_B)-1)
#define MAXARG_C        ((1<<SIZE_C)-1) #define MAXARG_C        ((1<<SIZE_C)-1)
   
   
/* creates a mask with `n' 1 bits at position `p' */  /* creates a mask with `n' 1 bits at position `p' */ 
#define MASK1(n,p)  ((~((~(Instruction)0)<<(n)))<<(p)) #define MASK1(n,p)  ((~((~(Instruction)0)<<(n)))<<(p))
   
/* creates a mask with `n' 0 bits at position `p' */  /* creates a mask with `n' 0 bits at position `p' */ 
#define MASK0(n,p)  (~MASK1(n,p)) #define MASK0(n,p)  (~MASK1(n,p))
   
/* /*
** the following macros help to manipulate instructions ** the following macros help to manipulate instructions
*/  */ 
   
#define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) #define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
       ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))        ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
   
#define getarg(i,pos,size)  (cast(int, ((i)>>pos) & MASK1(size,0))) #define getarg(i,pos,size)  (cast(int, ((i)>>pos) & MASK1(size,0)))
#define setarg(i,v,pos,size)    ((i) = (((i)&MASK0(size,pos)) | \ #define setarg(i,v,pos,size)    ((i) = (((i)&MASK0(size,pos)) | \
               ((cast(Instruction, v)<<pos)&MASK1(size,pos))))                ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
   
#define GETARG_A(i) getarg(i, POS_A, SIZE_A) #define GETARG_A(i) getarg(i, POS_A, SIZE_A)
#define SETARG_A(i,v)   setarg(i, v, POS_A, SIZE_A) #define SETARG_A(i,v)   setarg(i, v, POS_A, SIZE_A)
   
#define GETARG_B(i) getarg(i, POS_B, SIZE_B) #define GETARG_B(i) getarg(i, POS_B, SIZE_B)
#define SETARG_B(i,v)   setarg(i, v, POS_B, SIZE_B) #define SETARG_B(i,v)   setarg(i, v, POS_B, SIZE_B)
   
#define GETARG_C(i) getarg(i, POS_C, SIZE_C) #define GETARG_C(i) getarg(i, POS_C, SIZE_C)
#define SETARG_C(i,v)   setarg(i, v, POS_C, SIZE_C) #define SETARG_C(i,v)   setarg(i, v, POS_C, SIZE_C)
   
#define GETARG_Bx(i)    getarg(i, POS_Bx, SIZE_Bx) #define GETARG_Bx(i)    getarg(i, POS_Bx, SIZE_Bx)
#define SETARG_Bx(i,v)  setarg(i, v, POS_Bx, SIZE_Bx) #define SETARG_Bx(i,v)  setarg(i, v, POS_Bx, SIZE_Bx)
   
#define GETARG_Ax(i)    getarg(i, POS_Ax, SIZE_Ax) #define GETARG_Ax(i)    getarg(i, POS_Ax, SIZE_Ax)
#define SETARG_Ax(i,v)  setarg(i, v, POS_Ax, SIZE_Ax) #define SETARG_Ax(i,v)  setarg(i, v, POS_Ax, SIZE_Ax)
   
#define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx) #define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx)
#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
   
   
#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
           | (cast(Instruction, a)<<POS_A) \            | (cast(Instruction, a)<<POS_A) \
           | (cast(Instruction, b)<<POS_B) \            | (cast(Instruction, b)<<POS_B) \
           | (cast(Instruction, c)<<POS_C))            | (cast(Instruction, c)<<POS_C))
   
#define CREATE_ABx(o,a,bc)  ((cast(Instruction, o)<<POS_OP) \ #define CREATE_ABx(o,a,bc)  ((cast(Instruction, o)<<POS_OP) \
           | (cast(Instruction, a)<<POS_A) \            | (cast(Instruction, a)<<POS_A) \
           | (cast(Instruction, bc)<<POS_Bx))            | (cast(Instruction, bc)<<POS_Bx))
   
#define CREATE_Ax(o,a)      ((cast(Instruction, o)<<POS_OP) \ #define CREATE_Ax(o,a)      ((cast(Instruction, o)<<POS_OP) \
           | (cast(Instruction, a)<<POS_Ax))            | (cast(Instruction, a)<<POS_Ax))
   
   
/* /*
** Macros to operate RK indices ** Macros to operate RK indices
*/  */ 
   
/* this bit 1 means constant (0 means register) */  /* this bit 1 means constant (0 means register) */ 
#define BITRK       (1 << (SIZE_B - 1)) #define BITRK       (1 << (SIZE_B - 1))
   
/* test whether value is a constant */  /* test whether value is a constant */ 
#define ISK(x)      ((x) & BITRK) #define ISK(x)      ((x) & BITRK)
   
/* gets the index of the constant */  /* gets the index of the constant */ 
#define INDEXK(r)   ((int)(r) & ~BITRK) #define INDEXK(r)   ((int)(r) & ~BITRK)
   
#define MAXINDEXRK  (BITRK - 1) #define MAXINDEXRK  (BITRK - 1)
   
/* code a constant index as a RK value */  /* code a constant index as a RK value */ 
#define RKASK(x)    ((x) | BITRK) #define RKASK(x)    ((x) | BITRK)
   
   
/* /*
** invalid register that fits in 8 bits ** invalid register that fits in 8 bits
*/  */ 
#define NO_REG      MAXARG_A #define NO_REG      MAXARG_A
   
   
/* /*
** R(x) - register ** R(x) - register
** Kst(x) - constant (in constant table) ** Kst(x) - constant (in constant table)
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
*/  */ 
   
   
/* /*
** grep "ORDER OP" if you change these enums ** grep "ORDER OP" if you change these enums
*/  */ 
   
typedef enum { typedef enum {
/*---------------------------------------------------------------------- /*----------------------------------------------------------------------
name        args    description name        args    description
------------------------------------------------------------------------*/  ------------------------------------------------------------------------*/ 
OP_MOVE,/*   A B R(A) := R(B)                    */  OP_MOVE,/*   A B R(A) := R(B)                    */ 
OP_LOADK,/*   A Bx    R(A) := Kst(Bx)                 */  OP_LOADK,/*   A Bx    R(A) := Kst(Bx)                 */ 
OP_LOADKX,/*   A   R(A) := Kst(extra arg)              */  OP_LOADKX,/*   A   R(A) := Kst(extra arg)              */ 
OP_LOADBOOL,/*   A B C   R(A) := (Bool)B; if (C) pc++            */  OP_LOADBOOL,/*   A B C   R(A) := (Bool)B; if (C) pc++            */ 
OP_LOADNIL,/*   A B R(A), R(A+1), ..., R(A+B) := nil        */  OP_LOADNIL,/*   A B R(A), R(A+1), ..., R(A+B) := nil        */ 
OP_GETUPVAL,/*   A B R(A) := UpValue[B]              */  OP_GETUPVAL,/*   A B R(A) := UpValue[B]              */ 
   
OP_GETTABUP,/*   A B C   R(A) := UpValue[B][RK(C)]           */  OP_GETTABUP,/*   A B C   R(A) := UpValue[B][RK(C)]           */ 
OP_GETTABLE,/*   A B C   R(A) := R(B)[RK(C)]             */  OP_GETTABLE,/*   A B C   R(A) := R(B)[RK(C)]             */ 
   
OP_SETTABUP,/*   A B C   UpValue[A][RK(B)] := RK(C)          */  OP_SETTABUP,/*   A B C   UpValue[A][RK(B)] := RK(C)          */ 
OP_SETUPVAL,/*   A B UpValue[B] := R(A)              */  OP_SETUPVAL,/*   A B UpValue[B] := R(A)              */ 
OP_SETTABLE,/*   A B C   R(A)[RK(B)] := RK(C)                */  OP_SETTABLE,/*   A B C   R(A)[RK(B)] := RK(C)                */ 
   
OP_NEWTABLE,/*   A B C   R(A) := {} (size = B,C)             */  OP_NEWTABLE,/*   A B C   R(A) := {} (size = B,C)             */ 
   
OP_SELF,/*   A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]     */  OP_SELF,/*   A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]     */ 
   
OP_ADD,/*   A B C   R(A) := RK(B) + RK(C)               */  OP_ADD,/*   A B C   R(A) := RK(B) + RK(C)               */ 
OP_SUB,/*   A B C   R(A) := RK(B) - RK(C)               */  OP_SUB,/*   A B C   R(A) := RK(B) - RK(C)               */ 
OP_MUL,/*   A B C   R(A) := RK(B) * RK(C)               */  OP_MUL,/*   A B C   R(A) := RK(B) * RK(C)               */ 
OP_DIV,/*   A B C   R(A) := RK(B) / RK(C)               */  OP_DIV,/*   A B C   R(A) := RK(B) / RK(C)               */ 
OP_MOD,/*   A B C   R(A) := RK(B) % RK(C)               */  OP_MOD,/*   A B C   R(A) := RK(B) % RK(C)               */ 
OP_POW,/*   A B C   R(A) := RK(B) ^ RK(C)               */  OP_POW,/*   A B C   R(A) := RK(B) ^ RK(C)               */ 
#ifdef GCW_BIT  
OP_BAND,/*       A B C   R(A) := RK(B) & RK(C)                           */   
OP_BOR,/*        A B C   R(A) := RK(B) | RK(C)                           */   
OP_BXOR,/*       A B C   R(A) := RK(B) ^^ RK(C)                           */   
OP_BLSH,/*       A B C   R(A) := RK(B) << RK(C)                           */   
OP_BRSH,/*       A B C   R(A) := RK(B) >> RK(C)                           */   
OP_LAND,/*       A B C   R(A) := RK(B) && RK(C)                           */   
OP_LOR,/*        A B C   R(A) := RK(B) || RK(C)                           */   
OP_BNOT,/*        A B C   R(A) := ~RK(B)                                   */   
OP_LNOT,/*        A B C   R(A) := !RK(B)                                   */   
#endif  
OP_UNM,/*   A B R(A) := -R(B)                   */  OP_UNM,/*   A B R(A) := -R(B)                   */ 
OP_NOT,/*   A B R(A) := not R(B)                */  OP_NOT,/*   A B R(A) := not R(B)                */ 
OP_LEN,/*   A B R(A) := length of R(B)              */  OP_LEN,/*   A B R(A) := length of R(B)              */ 
   
OP_CONCAT,/*   A B C   R(A) := R(B).. ... ..R(C)           */  OP_CONCAT,/*   A B C   R(A) := R(B).. ... ..R(C)           */ 
   
OP_JMP,/*   A sBx   pc+=sBx; if (A) close all upvalues >= R(A) + 1  */   OP_JMP,/*   A sBx   pc+=sBx; if (A) close all upvalues >= R(A) + 1  */ 
OP_EQ,/*   A B C   if ((RK(B) == RK(C)) ~= A) then pc++        */  OP_EQ,/*   A B C   if ((RK(B) == RK(C)) ~= A) then pc++        */ 
OP_LT,/*   A B C   if ((RK(B) <  RK(C)) ~= A) then pc++        */  OP_LT,/*   A B C   if ((RK(B) <  RK(C)) ~= A) then pc++        */ 
OP_LE,/*   A B C   if ((RK(B) <= RK(C)) ~= A) then pc++        */  OP_LE,/*   A B C   if ((RK(B) <= RK(C)) ~= A) then pc++        */ 
   
OP_TEST,/*   A C if not (R(A) <=> C) then pc++           */  OP_TEST,/*   A C if not (R(A) <=> C) then pc++           */ 
OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++ */  OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++ */ 
   
OP_CALL,/*   A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */  OP_CALL,/*   A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ 
OP_TAILCALL,/*   A B C   return R(A)(R(A+1), ... ,R(A+B-1))      */  OP_TAILCALL,/*   A B C   return R(A)(R(A+1), ... ,R(A+B-1))      */ 
OP_RETURN,/*   A B return R(A), ... ,R(A+B-2)  (see note)  */  OP_RETURN,/*   A B return R(A), ... ,R(A+B-2)  (see note)  */ 
   
OP_FORLOOP,/*   A sBx   R(A)+=R(A+2); OP_FORLOOP,/*   A sBx   R(A)+=R(A+2);
           if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/             if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ 
OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx               */  OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx               */ 
   
OP_TFORCALL,/*   A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));  */  OP_TFORCALL,/*   A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));  */ 
OP_TFORLOOP,/*   A sBx   if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/  OP_TFORLOOP,/*   A sBx   if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ 
   
OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B    */  OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B    */ 
   
OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx])         */  OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx])         */ 
   
OP_VARARG,/*   A B R(A), R(A+1), ..., R(A+B-2) = vararg        */  OP_VARARG,/*   A B R(A), R(A+1), ..., R(A+B-2) = vararg        */ 
   
OP_EXTRAARG/*   Ax  extra (larger) argument for previous opcode */  OP_EXTRAARG/*   Ax  extra (larger) argument for previous opcode */ 
} OpCode; } OpCode;
   
   
#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
   
   
   
/*=========================================================================== /*===========================================================================
 Notes:  Notes:
 (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is  (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
 set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,  set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
 OP_SETLIST) may use `top'.  OP_SETLIST) may use `top'.
   
 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and  (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
 set top (like in OP_CALL with C == 0).  set top (like in OP_CALL with C == 0).
   
 (*) In OP_RETURN, if (B == 0) then return up to `top'.  (*) In OP_RETURN, if (B == 0) then return up to `top'.
   
 (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next  (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
 'instruction' is EXTRAARG(real C).  'instruction' is EXTRAARG(real C).
   
 (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.  (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
   
 (*) For comparisons, A specifies what condition the test should accept  (*) For comparisons, A specifies what condition the test should accept
 (true or false).  (true or false).
   
 (*) All `skips' (pc++) assume that next instruction is a jump.  (*) All `skips' (pc++) assume that next instruction is a jump.
   
===========================================================================*/  ===========================================================================*/ 
   
   
/* /*
** masks for instruction properties. The format is: ** masks for instruction properties. The format is:
** bits 0-1: op mode ** bits 0-1: op mode
** bits 2-3: C arg mode ** bits 2-3: C arg mode
** bits 4-5: B arg mode ** bits 4-5: B arg mode
** bit 6: instruction set register A ** bit 6: instruction set register A
** bit 7: operator is a test (next instruction must be a jump) ** bit 7: operator is a test (next instruction must be a jump)
*/  */ 
   
enum OpArgMask { enum OpArgMask {
 OpArgN,  /* argument is not used */   OpArgN,  /* argument is not used */ 
 OpArgU,  /* argument is used */   OpArgU,  /* argument is used */ 
 OpArgR,  /* argument is a register or a jump offset */   OpArgR,  /* argument is a register or a jump offset */ 
 OpArgK   /* argument is a constant or register/constant */   OpArgK   /* argument is a constant or register/constant */ 
}; };
   
LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
   
#define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3)) #define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3))
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
#define testAMode(m)    (luaP_opmodes[m] & (1 << 6)) #define testAMode(m)    (luaP_opmodes[m] & (1 << 6))
#define testTMode(m)    (luaP_opmodes[m] & (1 << 7)) #define testTMode(m)    (luaP_opmodes[m] & (1 << 7))
   
   
LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */  LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */ 
   
   
/* number of list items to accumulate before a SETLIST instruction */  /* number of list items to accumulate before a SETLIST instruction */ 
#define LFIELDS_PER_FLUSH   50 #define LFIELDS_PER_FLUSH   50
   
   
#endif #endif